
 
 Rau, Pg. 1.

DROWSY DRIVER DETECTION AND WARNING SYSTEM FOR COMMERCIAL VEHICLE DRIVERS: FIELD 
OPERATIONAL TEST DESIGN, DATA ANALYSES, AND PROGRESS. 
 
 
Paul Stephen Rau 
National Highway Traffic Safety Administration 
United States 
Paper Number 05-0192 
 
ABSTRACT 
 
Drowsiness among commercial vehicle drivers has been 
identified as the number one safety concern of commercial 
fleets at trucking summit meetings. Over the past 10 years, 
the U.S. Department of Transportation’s National Highway 
Traffic Safety Administration (NHTSA) and its research 
partners have sought to quantify the loss of alertness among 
commercial vehicle drivers. This work led to the 
development of the world’s first unobtrusive and valid sensor 
of loss of alertness, and has been the benchmark for 
continuing international study. Replicated experiments have 
shown that the most valid measure of loss of alertness among 
drivers is the percentage of eyelid closure over the pupil over 
time (Perclos). Formerly pioneered by Dr. Walter Wierwille 
at the Virginia Polytechnical Institute and State University, 
using a manual observation technique[6], Perclos is now 
monitored in real time using machine vision technology in 
the vehicle. In order to estimate the highway safety benefit 
based on the effectiveness of the system, a Field Operational 
Test (FOT) is underway with long haul and express (i.e., 
overnight) fleet operations. This paper discusses the field test 
methodology, as well as the questions each analysis seeks to 
answer. A summary of the status of the project, the results to 
date, and a vision of future work for the deployment of this 
technology will be provided. 
 
 
INTRODUCTION 
 
     Since 1996, research has been underway at the U.S. 
National Highway Traffic Safety Administration to develop, 
test, and evaluate a drowsy-driver detection and warning 
system for commercial vehicle drivers. Drowsiness is 
consistently identified in trucking summits as the number one 
safety concern of commercial vehicle drivers. As a result, 
numerous field studies and laboratory experiments were 
conducted, which produced the world’s first real-time and 
non-obtrusive means for detecting loss of alertness. Among 
all driver performance and bio-behavioral measures tested, 
the Percentage of Eyelid Closure Over Time (Perclos) 
reliably predicted the most widely recognized psycho-
physiological index of loss of alertness. That index is a 
measure of the latency between a visual stimulus and a motor 

response. The latency is collected using the Psychomotor 
Vigilance Task (PVT), whereby a subject   reacts to the onset 
of a display that counts milliseconds and then stops the 
counter by pressing a button. PVT is the most valid predictor 
of loss of alertness, previously validated for use in medical 
research[1].  
     The strong relationship between Perclos and PVT was 
consistent in all subsequent validation studies, which showed 
that the measure was invariant to individual lapsing style 
(subjects who might lapse earlier in the task v. later) and the 
passage of time (subjects who return months later to repeat 
the experiment.)[1]. We also learned that individuals possess 
a characteristic lapsing pattern; drowsy drivers progressively 
underestimate the passage of time and the extent of their 
drowsiness; external sensory stimulation triggered by an 
automatic detection system is not effective and performance 
measures like lane deviation alone do not reliably predict loss 
of alertness.  We did find that providing a driver with valid 
and real-time feedback about their alertness is the most 
effective means to motivate a driver to initiate self-alerting 
strategies, which then improves vehicle handling[4]. 
     The payoff of this program is that international efforts are 
underway to develop advanced drowsiness detection 
technologies that use the Perclos measure as a foundation. 
Monitoring driver condition is no longer elusive to 
measurement. Whereas, there exist challenges regarding 
implementation, a Field Operational Test is underway to 
begin understanding the highway safety benefits afforded by 
a system that provides real time feedback to heavy vehicle 
drivers about their alertness. This paper provides an overview 
of the experimental design, data analysis, and progress 
toward understanding those benefits.   
    
Problem Size  
 
     Our current understanding of the drowsy driver problem   
in the United States is based on NHTSA=s revised estimates 
for the 5-year period between 1989 and 1993[2,3]. An 
average annual total of 6.3 million police reported crashes 
occurred during this period. Of these, approximately 100,000 
crashes per year (1.6% of 6.3 million) were identified on 
Police Crash Reports (PCR) where drowsiness was indicated, 
and from a review of ADrift-Out-Of-Lane@ crashes not 
specifically indicated but which had drowsiness 
characteristics. Approximately 71,000 of all drowsy-related 
crashes involved non-fatal injuries, whereas 1,357 drowsy-
related fatal crashes resulted in 1,544 fatalities (3.6% of all 
fatal crashes), as reported by the Fatality Analysis Reporting 
System (FARS). Nevertheless, many run-off-roadway 
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crashes are not reported or cannot be verified by police, 
suggesting that the problem is much larger than previously 
estimated. 
     Regarding differences between cars and trucks, 
approximately 96% of annual drowsy driver crashes (96,000 
total including 1,429 fatalities) involved drivers of passenger 
vehicles, whereas only 3.3% (3,300 total including 84 
fatalities) involved drivers of combination-unit trucks. 
However, drowsiness was cited in more truck crash 
involvements (.82%) than passenger vehicle crashes (.52%). 
In addition, the risk of a drowsiness-related crash in a 
combination-unit truck=s operational life is 4.5 times greater 
than that of passenger vehicles, because of greater exposure 
(60K versus 11K miles/year), longer operational life (15 
versus 13 years), and more night [2,3]. There is also a greater 
likelihood of injury in heavy vehicle crashes. Approximately 
37% of the truck-related drowsy driver fatalities and 20% of 
the non-fatal injuries occurred to individuals outside the 
truck, compared to 12% of the fatalities and 13% of the non-
fatal injuries from drowsy passenger vehicle drivers. 
 
 
FIELD OPERATIONAL TEST 
 
      This field test is underway to collect and analyze driver 
performance and alertness data between August 2004 and 
August 2005. There are 102 commercial drivers and 34 
single-unit heavy trucks. There will be 16 weeks of data 
collected from each driver. Fifty-one drivers from Howell’s 
Trucking Company will represent long haul (cross country) 
operations. The remaining drivers will represent overnight 
express operations, 6 from Pitt-Ohio (Pennsylvania Turnpike 
Operations) and 45 from J.B. Hunt (Virginia Interstate 
Highway Operations). This arrangement was decided based 
on the experimental design and analysis requirements to 
answer the key research questions of the FOT. Whereas, the 
process of data collection, reduction and transfer has begun, 
there are no results to report in this writing.  
 
Participation 
 
     There are three main research partners involved with this 
field test. First, Dr. Rich Hanowski of the Virginia Poly-
Technical and State University Transportation Institute 
(VTTI) provides leadership and expertise in the activity of 
conducting the field test. Activity includes vehicle 
instrumentation, subject scheduling, data acquisition, data 
reduction, special analyses, and transmission of data to the 
independent evaluator. Second, working in close 
coordination with the “conductor”, the “independent 
evaluator” role includes Dr. Bruce Wilson and Dr. Steve 
Popkin, from the Department of Transportation’s Volpe 
Center in Cambridge, Massachusetts. Volpe provides 

expertise in the experimental design and data analyses 
required to answer the objectives of this research. Lastly, Dr. 
Richard Grace, the developer of the Perclos sensor and 
president of Attention Technologies in Pittsburgh, PA., 
supplies the conductor with the required copies of the 
advanced Perclos sensor.  
 
Test Objectives 
 
     Through this research we expect to learn about 1) the 
nature of the distribution of drowsiness in the population of 
heavy vehicle drivers, and how these groups differ in their 
performance with and without the warning system; 2) the 
effects of independent factors such as driver age, health, 
sleep patterns, road conditions, and type of trucking 
operation, etc.; 3) the effect of the warning system and 
independent factors on conflict driving, near collisions, and 
severe near collisions; and 4) fleet acceptance and 
deployment prospects.  
     This paper is organized to show how the experimental 
design and data analyses are structured to answer the safety 
benefits question of the Field Operational Test (FOT.) FOT 
questions 3 – 5, below, are the subject of a separate paper.  
     1). What are the safety benefits associated with device 
usage? 
     2). What performance and capabilities does the Drowsy 
Driver Warning System (DDWS) have? 
     3). Will drivers accept the device? 
     4). Will fleet management purchase the device? 
     5). What are the deployment prospects of the DDWS? 
 
Preliminary Tests 
 
     In October 2003, three preparatory activities were 
completed in advance of the FOT to verify the operational 
condition of the prototype equipment. The three activities 
included a laboratory revalidation of the Perclos metric 
produced by a 2nd generation Perclos monitor, the 
development of a Perclos system user interface suitable for 
commercial vehicle operations, and a study of the response 
characteristic of the Perclos monitor in a heavy vehicle 
environment. Activities addressed concerns about using the 
device in an operational setting. Its usability depended on the 
capability of the camera to detect infrared light reflected back 
to the source at the camera from the drivers’ retina.   
     Perclos revalidation was successful and involved a 
replication of the prospective laboratory protocol, used in 
two previous validation efforts [1,4]. In a second effort, 
Attention Technologies convened focus groups separately 
composed of commercial drivers and design experts to 
determine the essential functionality of the interface. The 
redesign included visual displays showing the number of 
total lapses, the longest lapse during the previous 
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measurement interval, and the length of roadway traversed 
during that lapse. Drivers would then acknowledge the 
lapsing by pressing a button on top of the device to silence 
the concurrent audible warning. Lastly, Dr. Weirwille, et al. 
of VTTI performed a systematic characterization study of the 
device detecting Perclos in trucks. The study measured the 
sensitivity of the device to retinal pigmentation (the ability of 
the eye to reflect infrared light) and to the refraction of light 
through eyeglasses. Sensitivity was sufficient for nighttime 
operation with a test for retinal reflectance as a requisite for 
subject participation.          
 
 
EXPERIMENTAL DESIGN 
 
     Team experts articulated the experimental design, which 
was reduced to a written specification by Dr. Bruce Wilson 
and Dr. Steve Popkin of the Volpe Center, and Mr. Greg 
Maislin of Biomedical Statistical Consulting of Wynnewood, 
PA. The following is based on the written specification. 
     Alternative designs were evaluated with consideration for 
1) the maximum statistical power required for the safety 
benefits estimation; 2) accommodating data loss; and 3) 
maximizing the statistical power for the driver acceptance 
analysis. 
     The selected design is represented as follows: 
 
 
  Alert 
Disabled           Alert Enabled 
______    ____________________ 
A  A  A   B  B  B  B  B   B  B  B  B   Experimental Group 
                                                            26 drivers 
 
A  A  A  A  A   A  A  A  A  A  A  A   Control Group 
____________________________    8 drivers 
 
1   2   3   4   5   6   7   8   9 10 11 12 
                         Week 
 
 
     This design includes 26 experimental participants from 
each trucking operation. These participants begin the study in 
a 3-week baseline condition, and follow with a 9-week 
treatment condition. The initial period is to measure baseline 
behavior for estimating the main effects of sleepiness, 
performance and crash risk factors. This design also includes 
8 control participants from each trucking operation who will 
be monitored for the duration of the experiment, but who 
will not receive DDWS alerts. These 34 drivers from each 
trucking operation comprise the ‘core’ drivers of the 
experiment. Whereas, the minimum useful baseline period 
for the experimental group is three weeks, the corresponding 

maximum duration of the treatment period is 9 weeks. 
Therefore, this design maximizes the exposure of subjects to 
the device, while retaining proper experimental control of the 
variance for statistical analysis.  
 
 
ANALYSES 
 
SAFETY BENEFITS 
 
     DDWS Effect on Drowsiness. Analyzing the effect of the 
DDWS on drowsiness is a key safety benefits estimation 
objective. This objective addresses three research questions.:  
     1) What is the distribution of drowsy level Perclos, and do 
these differ with and without the DDWS?; 
     2) Does the distribution of drowsiness vary by driver 
“trait” characteristics (e.g., age, health); driver “state” 
characteristics (e.g., quality of previous night’s sleep, elapsed 
time on duty, “circadian phase”); road conditions (e.g., road 
type, urban/rural); and type of operation (overnight express 
v. long haul)?; and  
     3) Do differences in drowsiness between nighttime 
DDWS-On and DDWS-Off driving vary according to driver 
state characteristics, road conditions, and type of operation? 
     This framework of questions applies to the analysis of 
drowsiness, as well as further analyses where the DDWS 
safety benefit can be observed, i.e. driving performance, 
conflict driving, and near collision driving 
 
Drowsiness level with and without the DDWS 
 
     Drowsiness is measured using a 3-minute running average 
of slow eyelid closures, as assessed by the DDWS during 
nighttime driving (P3). The distributions of Perclos P3 are 
compared using condition-specific summaries, duty period-
specific summaries, and within-duty-period-stratified 
summaries as follows: 
      The experimental condition-specific summary is the 
primary summary measure for characterizing driver 
drowsiness within a specific condition. For example, in the 
comparison of conditions A3B9, median values will be 
determined for the 3-week baseline DDWS-Off period and 
the 9-week primary DDWS-On period. 
     Duty-period-specific summaries are computed over all 
nighttime epochs or measurement intervals (20 minutes) 
within each duty period. These statistics are used in mixed 
model analyses of variance that will always account for 
within-driver correlations across duty periods within driver 
and condition factors Duty period-specific mixed models 
admit “driver state” covariates such as prior sleep/wake 
history. 
     In further extensions of the analyses above, epochs within 
a duty cycle may be further stratified for groups of epochs 
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defined by characteristics that can vary within a duty period. 
Characteristics include those that reflect the homeostatic 
drive for sleep (reflected in elapsed time since the start of the 
duty period), those that reflect driving conditions such as 
rural/urban, road type, congestion, and other factors. For 
example, we will estimate the portion of the driving distance 
that drivers spend in each of four drowsy states: none, lo, 
medium, and high. 
    Other than analyses using Perclos P3, the DDWS provides 
a continuous record of the number of epochs the eyes were 
open (and closed). When the “number of epochs the eyes 
were closed” sample is divided by the total number of 
samples, a measure of the proportion of time that both eyes 
are closed can be obtained.  
     Since the variance of statistical estimates of proportions 
varies proportionally with its expected value, the arcsine 
variance stabilizing transformation will be employed in 
parametric analyses that assume variance homogeneity. 
These analyses would then be analogous to those performed 
on P3. 
 
Drowsiness varying by independent factors 
 
     Drowsiness levels recorded by the DDWS will be 
summarized by relevant independent variables (i.e. age, job 
tenure, type of freight operation, type of driving) over clock 
time, consecutive workday, etc. Statistical exploration 
techniques will provide an analysis of the inter-relations 
between the selected independent variables and their effect 
on drowsiness levels, as measured by the DDWS. These 
analyses (e.g. factor analysis, correlation matrices, 
variance/co-variance tables) will determine the selection of 
variables used in subsequent hypothesis testing. 
     The second research question regarding the DDWS effect 
on drowsiness is: Does the distribution of drowsiness vary by 
driver “trait” characteristics (e.g., age, health); driver “state” 
characteristics (e.g., quality of previous night’s sleep, elapsed 
time on duty, “circadian phase”); and road conditions (e.g., 
road type, urban/rural)? As above, this question will be 
answered by an analysis of the interrelations between each 
candidate control variable and drowsiness (P3), separately for 
observations made under DDWS-Off and DDWS-On 
conditions. Specifically, P3 values for each subject under 
each condition will be summarized for all nighttime epochs 
to assess, for example, the contribution of driver traits in the 
variability of P3.  
      
Differences in drowsiness by independent factors 
 
     Do differences in drowsiness between nighttime DDWS-
On and DDWS-Off driving vary according to driver state 
characteristics, road conditions, and trucking operation? The 
first question in this section examined drowsiness level 

distributions and differences between them with and without 
the DDWS. This is a “Big Picture” type of question and 
hypothesis. The second question examined variations in 
drowsiness with a number of independent factors, e.g. 
variation in drowsiness from the quality of the previous 
night’s sleep. The second question identifies factors that 
affect drowsiness and, therefore which could confound the 
observed differences between drowsiness with the DDWS on 
and off. In order to control these variables, this 3rd question 
uses information from question 2 and provides a finer 
(stratified) analysis of drowsiness distributions. The finer 
stratified analysis allows us to test the hypothesis: Is the 
difference in P3 scores between DDWS-On and DDWS-Off 
the same across different characteristics?  
 
     Driving Performance.  The questions and hypotheses of 
the next two sections are nearly identical to those of the 
drowsiness section, except that the topics change. In the next 
2 sections, drowsiness is ignored while examining only the 
effect of the DDWS (Off v. On) on driver performance, 
conflicts, and near collisions. 
     Whereas, the relationship between P3 and drowsiness has 
been validated, it is possible that there will be beneficial (or 
adverse) effects of the DDWS on driving performance and 
crash risk that are not necessarily detected by changes in P3 
for every driver. Thus, driving performance and crash risk 
need to be evaluated, in their own right, as potential 
outcomes that are affected by the DDWS. 
     In examining driver performance, the analyses focus on 
headway closing and lane keeping measures, since these 
crash categories largely characterize the drowsy driver crash 
statistics. The Measures of Performance (MOP’s) include 1) 
braking (number of events, peak deceleration distribution, 
duration of event); 2) closing (minimum range per event, 
minimum time to collision per event); 3) following (time gap 
v. vehicle speed); 4) lane changes (frequency, peak 
acceleration distribution, duration); 5) lane keeping (violation 
frequency, violation distance, boundary type, direction); and 
6) speed maintenance (vehicle speed v. posted speed). 
     By replacing the drowsiness questions and hypotheses of 
the previous section with MOP’s, the questions and 
hypotheses about driving performance, conflict driving, and 
near-collision driving are stated as follows: 
     1) What is the nature of the MOP’s distributions, and do 
these differ with and without the DDWS?;  
      2) Does the distribution of MOP’s vary by driver “trait” 
characteristics (e.g., age, health); driver “state” characteristics 
(e.g., quality of previous night’s sleep, elapsed time on duty, 
“circadian phase”); road conditions (e.g., road type, 
urban/rural); and type of operation (overnight express v. long 
haul)?; and 
     3) Do differences in MOP’s between nighttime DDWS-
On and DDWS-Off driving vary according to driver state 
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characteristics, road conditions, and type of operation? 
 
Performance measure distributions with and without the 
DDWS 
 
     Each MOP is similarly analyzed. MOP’s selected for 
analysis are identified through exploratory techniques 
including factor analysis, correlation, and covariance 
analyses.  As an example, for the number of lane boundary 
violations, this measure is the median number of lane 
violations normalized by vehicle miles traveled (VMT) for 
each driver. The related hypothesis is: “Driver’s median lane-
boundary-violation frequencies (violations/VMT) are lower 
when the device is active compared to when the device is 
inactive.” This analysis provides a separate understanding of 
the distribution of MOP’s, and for identifying the most 
significant measures that might explain the performance 
benefit of the DDWS. This analysis is performed in advance 
of a subsequent univariate step used to understand how a 
single performance measure is mediated by factors such as 
driver traits.    
   
Performance measures and independent factors 
 
     In the next step, each selected measure of performance 
will be summarized with respect to all independent variables 
(i.e. age, job, tenure, type of freight operation, type of 
driving), over clock time, consecutive workday, etc. This 
level of analysis separately addresses each MOP. Univariate 
statistics, including Analysis of Variance, and Multiple 
Correlation and Regression procedures will provide the 
analysis framework. These results will be used to understand 
the main and interaction effects of independent factors upon 
each MOP, in the presence v. absence of the DDWS. 
 
Differences in measures with independent factors 
 
     Multivariate Regression and Correlation (MRC) analysis 
will examine the importance and interaction of each trait in 
predicting single, combination, or interacting MOP’s. The 
framework will provide a comprehensive means to develop a 
well-specified model of driver performance, as well as 
identifying the most significant relationships that explain the 
performance benefits of the DDWS. Results of the previous 
2 steps will assist to identify independent variables that may 
serve as covariates in the MRC analysis in order to reduce the 
number of the most important factors in the model that 
explain the performance benefit of the DDWS. 
 
     Conflict Driving. Previous analyses do not distinguish 
between safe and risky driving. In this analysis, we begin 
with the crash statistics. Crash statistics provide the dominant 
drowsy driver pre-crash scenarios. The DAS supports the 

identification of these scenarios in the FOT data. Pre-crash 
scenarios are classified as combinations of vehicle movement 
and critical event pairs. For example, Going straight – 
Departed road; Going straight – Other vehicle slower; Going 
straight – Lost control; Negotiating a curve – Departed 
roadway; etc. Using crash statistics based on 1997-2001 GES 
data, drowsy crashes are classified and distributed among the 
scenarios.  
     Once itemized, our familiar framework of research 
questions is then applied, and then similarly analyzed as in 
the drowsiness and driver performance sections. For 
example, without restating the entire sequence, the first 
question is, “What is the nature of the conflict attributes and 
do these differ with and without the DDWS.” 
     Conflict attributes used to characterize a conflict include: 
1) Frequency – Expressed in conflicts per VMT. 
2) Initial conditions –Typically the closing speed, binned 
over several ranges. 
3) Response timing – Typically the time-to-collision for 
closing conflicts or time-to-departure for lateral conflicts. 
4) Response intensity – Typically the longitudinal and or 
lateral acceleration. 
 
Conflict Driving Analyses 
 
     Analyses of conflict driving follow the steps, as 
previously described for drowsiness and driver performance. 
The analysis framework includes the familiar progression, 
i.e. Conflicts with and without the DDWS, Conflict attributes 
and independent factors, and Differences in attributes with 
independent factors.”  
     An example analysis for “Conflicts with and without the 
DDWS” begins by measuring the conflict frequency for a 
going-straight-and-closing scenario. By computing the 
median number of conflicts normalized by VMT for each 
driver, the following hypothesis may be tested: “Drivers’ 
median going-straight-and-closing conflict frequency 
(conflicts/VMT) are lower when the DDWS is active 
compared to when the DDWS is inactive.” Other conflicts 
are similarly reduced, including near collision driving. 
     The next step in the analysis, “Conflict attributes and 
independent factors”, involves exploring each measured 
conflict attribute with respect to relevant independent 
variables, e.g. traits, driver state characteristics, road 
conditions. As before, this level of analysis involves 
univariate statistical procedures to understand how 
independent variables explain variability observed in each 
conflict attribute. The analysis is separately performed under 
DDWS-On and DDWS-Off conditions for each attribute. 
The outcome of this step, including the initial exploratory 
procedures (factor analysis, correlation, covariance, etc.), 
provides an understanding of each measure separately and is 
the basis for selecting factors used in the subsequent 
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multivariate analyses that address differences among 
attributes from independent factors. 
 
CAUSAL ANALYSES 
 
     The objective of the causal analysis is to determine if the 
observed data support the existence of a mediating factor that 
explains the relationship between independent variables and 
an outcome variable. Mediating variables explain why an 
antecedent variable (independent variable) affects a 
consequent variable (dependent variable). For example, 
sleepiness is proposed to reduce driving performance, which 
in turn increases the rate of driving conflicts. The 
introduction of the intervening variable (driving 
performance) transforms one proposition into 2 linked 
propositions; from: Sleepiness leads to increases in driving 
conflicts, to: Sleepiness leads to driving performance 
reductions – driving performance reductions lead to increases 
in driving conflicts. 
     The analysis of causes will include an exhaustive 
exploration of candidate relations that might suggest 
causality. For example, the analysis will examine whether the 
relationship between sleepiness and conflict is mediated by 
driving performance; and whether the relationship between 
DDWS and improved driving performance is mediated 
through sleepiness. Results of previous statistical analyses 
will help identify the most likely candidates to examine for 
causal relationships.  
     This phase of the analysis is an extension of previously 
described exploratory, univariate, and multivariate statistical 
methods. However, the extension of these models to 
understand causality includes an analysis of covariance. In 
these procedures, factors are entered separately as an 
extension of the model containing specific continuous 
variables. There are optional arrangements that include 
adding factors as a collective group, or even as a combined 
representation (such as the first un-rotated principal 
component of a factor analysis). In these statistical model 
structures, using covariate extensions, we can explicitly test 
for any co-linear effects of intervening variables.  
 
CRASH ESTIMATION 
 
     Crash estimation techniques depart from the analysis 
system previously discussed. Using crash estimation, DDWS 
safety benefits will be estimated using the measures of 1) the 
number of heavy-vehicle crashes prevented, and 2) the 
number of heavy-vehicle fatalities prevented. These numbers 
will then be expressed in economic terms (U.S. dollars saved 
due to crash and fatality reduction.) 
     The technique used will apply a “crash forecast” method 
by comparing forecasts of crashes with the DDWS deployed, 
by adjusting FOT data (conflicts and near collisions) with 

GES and CDS data (pre-crash scenarios and crashes without 
DDWS deployed).  
     Whereas, the latter estimation methods are based on crash 
conflicts, other possible approaches will include indirect 
methods. Indirect methods to estimate crash probabilities 
may include crash prevention boundary analysis, Extreme 
value theory, Monte Carlo simulation, and/or Severity index. 
     A comparative assessment of the various indirect 
techniques may be found elsewhere. However, the Monte 
Carlo method is perhaps the most suitable for the DDWS 
evaluation. In this method, there will be distributions formed 
from the FOT data before and after device activation. We 
will use these distributions to predict the conditional crash 
probabilities and crash frequencies. 
 
 
PROJECT STATUS 
 
      FOT conductor and independent evaluator activities of 
the project are performing at an outstanding level. Each team 
has been challenged by changes in fleet operation, including 
the loss of drivers and relocation of fleet operations.  
However, both activities are operating on-cost and on-
schedule, with completion expected in August 2005. 
 
 
FUTURE WORK 
 
     Depending on a favorable outcome of this FOT, 
operational concepts for fleet deployment will need to be 
defined. In working with the Federal Motor Carrier Safety 
Administration (FMCSA) throughout the development of this 
FOT, there have been discussions that have considered the 
use of this device in some capacity in parallel with hours of 
service rules. The combination would provide a means for 
performance based monitoring. There are numerous other 
concepts, ranging from its use as a stand-alone feedback 
system to a system that provides alertness data to a dispatcher 
for altering a delivery schedule as required.  
     Whereas, the DDWS of this study operates between dusk 
and dawn, there exist international efforts to improve the 
detection capability of the Perclos sensor. These new systems 
will enable studies for understanding daytime drowsiness, 
and fatigue that is suddenly experienced when transitioning 
between levels of activity.   
     Future work may also include a continuation of the FOT 
in order to better estimate both the safety benefits and 
DDWS usability when the technology is deployed. A period 
of continued testing will ensure that our crash estimation 
models receive an optimal exposure to crash events in order 
for these models to produce the most statistically reliable 
benefits estimates.  
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CONCLUSIONS  
      
     Through the experimental design and data analyses of this 
FOT, further understanding is expected about highway safety 
benefits, fleet acceptance, operational utility, and fatigue 
management practices. We believe that drowsy impaired 
driving can be successfully mediated by advanced 
technology. We expect that when combined as one 
component of a fleet’s fatigue management strategy, the 
public safety benefit will be greatly multiplied.  Finally, the 
learning accomplished by this research should assist the 
development of similar systems for passenger vehicle drivers, 
where we observe the largest prevalence of the fatigue crash 
problem. 
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ABSTRACT 
 
A key to the development of effective crash 
countermeasures is an understanding of pre-crash 
causal and contributing factors. This research effort 
was initiated to provide an unprecedented level of 
detail concerning driver performance, behavior, 
environment, driving context and other factors that 
were associated with critical incidents, near crashes 
and crashes for 100 drivers across a period of one 
year.  A primary goal was to provide vital exposure 
and pre-crash data necessary for understanding 
causes of crashes, supporting the development and 
refinement of crash avoidance countermeasures, and 
estimating the potential of these countermeasures to 
reduce crashes and their consequences.  
  
The 100-Car Naturalistic Driving Study database 
contains many extreme cases of driving behavior and 
performance, including severe fatigue, impairment, 
judgment error, risk taking, willingness to engage in 
secondary tasks, aggressive driving, and traffic 
violations. The data set includes approximately 
2,000,000 vehicle miles, almost 43,000 hours of data, 
241 primary and secondary drivers, 12 to 13 months 
of data collection for each vehicle, and data from a 
highly capable instrumentation system including five 
channels of video and vehicle kinematics.  From the 
data, an “event” database was created, similar in 
classification structure to an epidemiological crash 
database, but with video and electronic driver and 
vehicle performance data. The events are crashes, 
near crashes and other “incidents.” Data was 
classified by pre-event maneuver, precipitating 
factor, event type, contributing factors, and the 
avoidance maneuver exhibited. Parameters such as 
vehicle speed, vehicle headway, time-to-collision, 
and driver reaction time are also recorded. 
 
 This paper presents the 100-Car Naturalistic 
Driving Study method, including instrumentation and 
vehicle characteristics, and a sample of study results.  
Presented analyses address the driver characteristics, 

the role of inattention and distraction in rear-end and 
lane change events.  In addition, the methodological 
attributes of naturalistic data collection and the 
implications for a larger-scale naturalistic data 
collection effort are provided. 
 
 
INTRODUCTION 
 
 Although the crash rate is declining, the number 
of driving related deaths is approximately 43,000 per 
year.   While the development of mechanistic safety 
features, such as seat belts, air bags, and collapsible 
steering wheels, have been extremely important in 
lowering the vehicle-related death rate, it is plausible 
that the next significant decrease in roadway fatalities 
will require systems to assist drivers in preventing 
crashes.  However, driver assistance systems require 
a more precise understanding of the driver behaviors 
prior to an adverse driving event to be more effective. 
 
 Data collected to study driver behavior have 
historically relied on epidemiological, simulator, and 
test track studies.   While these are valuable 
techniques that certainly have their place in the study 
of driver behavior, they are not well suited to explain 
the combination of factors leading to an adverse 
driving event.  For example, a police crash report 
form might list the cause of a rear-end collision as 
“following too close.”  However, contributing factors 
might be fatigue, distraction, traffic backed up from 
the intersection, and/or a blind corner leading up to 
the same intersection.  For this hypothetical case, 
there are both driver and infrastructure related causes 
of the event.  Likewise, simulator and test track 
studies cannot mimic the combination of complex 
driving environments and the simultaneous array of 
driver behaviors that lead to many events. 
 
 As demonstrated in only a small handful of 
studies, naturalistic data collection fills the gap in 
current data collection methods.   “Naturalistic” data 
includes data from a suite of vehicle sensors and 
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unobtrusively placed video cameras.  The drivers are 
given no special instructions, no experimenter is 
present, and the data collection instrumentation is 
unobtrusive.  This naturalistic data collection method 
was applied to study fatigue and resulting driver 
performance in truck drivers making local/short haul 
deliveries  [1]  In this study, 42 drivers drove 4 
instrumented vehicles while they made deliveries.  
The study resulted in approximately 1000 hours of 
data that included five video views and a host of 
vehicle sensor data. 
 
  In a long-haul truck driving study, naturalistic 
data was collected from 56 single and team drivers 
who drove one of two instrumented vehicles [2].   
Data was collected to assess sleep quality, driver 
alertness, and driver performance on normal revenue-
producing trips averaging up to eight days in length.  
This data collection effort resulted in 250 hours of 
data that was triggered based upon vehicle sensor 
data.  The results showed that single drivers suffered 
the worst bouts of fatigue and had the most severe 
critical incidents (by about 4 to 1). 
 
 A key to the development of effective crash 
countermeasures is an understanding of pre-crash 
causal and contributing factors. This research effort 
was initiated to provide an unprecedented level of 
detail concerning driver performance, behavior, 
environment, driving context and other factors that 
were associated with critical incidents, near crashes 
and crashes for 100 drivers across a period of one 
year.  A primary goal was to provide vital exposure 
and pre-crash data necessary for understanding 
causes of crashes, supporting the development and 
refinement of crash avoidance countermeasures, and 
estimating the potential of these countermeasures to 
reduce crashes and their consequences. 
 
 The 100-Car Naturalistic Driving Study (100-
Car Study) was the first instrumented vehicle study 
undertaken with the primary purpose of collecting 
large-scale naturalistic driving data.  Unique to the 
100-Car Study was that the majority of the drivers 
drove their own vehicles (78 out of 100 vehicles).  
There is every indication that the drivers rapidly 
disregarded the presence of the instrumentation, as is 
indicated by the resulting database containing many 
extreme cases of driving behavior and performance 
including:  severe fatigue, impairment, judgment 
error, risk taking, willingness to engage, aggressive 
driving, and traffic violations (just to name a few).  
These types of driving events have been heretofore 
greatly attenuated by other empirical techniques.  
 Due to the scale of the 100-Car Study and the 
fact that private vehicles were instrumented, new 

techniques had to be created and existing methods 
modified to make the study successful.  The data 
collection effort resulted in the following data set 
contents: 
 
• Approximately 2,000,000 vehicle miles   
• Almost 43,000 hours of data   
• 241 primary and secondary drivers participated  
• 12 to 13 month data collection period for each 

vehicle 
• Five channels of video and many vehicle state 

and kinematic variables 
 
 This paper presents a sample of the analysis 
results from the 100-Car Study data collected.  The 
full study report is available through the National 
Highway Traffic Safety Administration [3]. 
  
METHOD 
 
Instrumentation 
 
 The 100-Car instrumentation package was 
engineered by VTTI to be rugged, durable, 
expandable, and unobtrusive.  It constituted the 
seventh generation of hardware and software, 
developed over a 15 year period that has been 
deployed for a variety of purposes.  The system 
consisted of a Pentium-based computer that received 
and stored data from a network of sensors distributed 
around the vehicle.  Data storage was achieved via 
the system’s hard drive, which was large enough to 
store data for several weeks of driving before 
requiring data downloading. 
 
 Each of the sensing subsystems in the car was 
independent, so that any failures that occurred were 
constrained to a single sensor type.  Sensors included 
a vehicle network box that interacted with the vehicle 
network, an accelerometer box that obtained 
longitudinal and lateral kinematic information, a 
headway detection system to provide information on 
leading or following vehicles, side obstacle detection 
to detect lateral conflicts, an incident box to allow 
drivers to flag incidents for the research team, a 
video-based lane tracking system to measure lane 
keeping behavior, and video to validate any sensor-
based findings.  The video subsystem was 
particularly important as it provided a continuous 
window into the happenings in and around the 
vehicle.  This subsystem included five camera views 
monitoring the driver’s face and driver side of the 
vehicle, the forward view, the rear view, the 
passenger side of the vehicle, and an over-the-
shoulder view for the driver’s hands and surrounding 
areas.  An important feature of the video system is 
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that it was digital, with software-controllable video 
compression capability.  This allowed 
synchronization, simultaneous display, and efficient 
archiving and retrieval of 100-Car data.  A frame of 
compressed 100-Car video data is shown in Figure 1. 
 
 The modular aspect of the data collection system 
allowed for integration of instrumentation that was 
not essential for data collection, but which provided 
the research team with additional and important 
information.  These subsystems included automatic 
collision notification that informed the research team 
of the possibility of a collision; cellular 
communications that were used by the research team 
to communicate with vehicles on the road to 
determine system status and position; system 
initialization equipment that automatically controlled 
system status; and a GPS positioning subsystem that 
collected information on vehicle position.  The GPS 
positioning subsystem and the cellular 
communications were often used in concert to allow 
for vehicle localization and tracking. 
 

 
Figure 1.  A compressed video image from the 
100-Car data.  The driver’s face (upper left 
quadrant) is distorted to protect the driver’s 
identity.  The lower right quadrant is split with 
the left-side (top) and the rear (bottom) views. 
 
 The system included several major components 
and subsystems that were installed on each vehicle.  
These included the main Data Acquisition System 
(DAS) unit that was mounted under the package shelf 
for the sedans (Figure 2) and behind the rear seat in 
the SUVs.    
 
 Doppler radar antennas were mounted behind 
special plastic license plates on the front and rear of 
the vehicle (Figure 3).  The location behind the plates 
allowed the vehicle instrumentation to remain 
inconspicuous to other drivers. 

 
Figure 2.  The main Data Acquisition System 
(DAS) unit mounted under the “package shelf” of 
the trunk. 

 
 

 
Figure 3.  Doppler radar antenna mounted on the 
front of a vehicle, covered by one of the plastic 
license plates used for this study. 
 
 The final major components in the 100-Car 
hardware installation were mounted above and in 
front of the center rear-view mirror.  These 
components included an “incident” pushbutton box 
which housed a momentary pushbutton that the 
subject could press whenever an unusual event 
happened in the driving environment.  Also contained 
in the housing was an unobtrusive miniature camera 
that provided the driver face view.  The camera was 
invisible to the driver since it was mounted behind a 
“smoked” Plexiglas cover. 
 
 Mounted behind the center mirror were the 
forward-view camera and the glare sensor (Figure 4).  
This location was selected to be as unobtrusive as 
possible and did not occlude any of the driver’s 
normal field of view. 
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Figure 4.  The incident push button box mounted 
above the rearview mirror.  The portion on the 
right contains the driver face/left vehicle side 
camera hidden by a smoked plexiglass cover. 
 
Subjects 
 
 One-hundred drivers who commuted into or out 
of the Northern Virginia/Washington, DC 
metropolitan area were initially recruited as primary 
drivers to have their vehicles instrumented or receive 
a leased vehicle for this study.  Drivers were 
recruited by placing flyers on vehicles as well as by 
placing newspaper announcements in the classified 
section.  Drivers who had their private vehicles 
instrumented (78) received $125.00 per month and a 
bonus at the end of the study for completing 
necessary paperwork.  Drivers who received a leased 
vehicle (22) received free use of the vehicle, 
including standard maintenance, and the same bonus 
at the end of the study for completing necessary 
paperwork.  Drivers of leased vehicles were insured 
under the Commonwealth of Virginia policy. 
 
 As some drivers had to be replaced for various 
reasons (for example, a move from the study area or 
repeated crashes in leased vehicles), 109 primary 
drivers were included in the study.  Since other 
family members and friends would occasionally drive 
the instrumented vehicles, data were collected on 132 
additional drivers.  
 
 A goal of this study was to maximize the 
potential to record crash and near-crash events 
through the selection of subjects with higher than 
average crash- or near-crash risk exposure.  Exposure 
was manipulated through the selection of a larger 
sample of drivers below the age of 25, and by the 
selection of a sample that drove more than the 
average number of miles.  The age by gender 
distribution of the primary drivers is shown in Table 
1.  The distribution of miles driven by the subjects 

during the study appears as Table 2.  As presented, 
the data are somewhat biased compared to the 
national averages in each case, based on TransStats, 
2001 [4].  Nevertheless, the distribution was 
generally representative of national averages when 
viewed across the distribution of mileages within the 
TransStats data. 
  
 One demographic issue with the 100-Car data 
sample that needs to be understood is that the data 
were collected in only one area (i.e., Northern 
Virginia/Metro Washington, DC).  This area 
represents primarily urban- and suburban driving 
conditions, often in moderate to heavy traffic.  Thus, 
rural driving, as well as differing demographics 
within the U.S., are not well represented.  
 

 
Table 1.  Driver age and gender distributions. 

 
 Gender  

Age  N 
% of total Female Male 

Grand 
Total 

18-20 9 7 16 
  8.3% 6.4% 14.7% 
21-24 11 10 21 
  10.1% 9.2% 19.3% 
25-34 7 12 19 
  6.4% 11.0% 17.4% 
35-44 4 16 20 
  3.7% 14.7% 18.3% 
45-54 7 13 20 
  6.4% 11.9% 18.3% 
55+ 5 8 13 
  4.6% 7.3% 11.9% 

Total N 43 66 109 
Total Percent 39.4% 60.6% 100.0% 

  
Table 2.  Actual miles driven during the study. 

 
Actual 
miles 
driven  

Number 
of 

Drivers 
Percent of 

Drivers 
0-9,000 29 26.6% 
9,001-
12,000 22 20.2% 
12,001-
15,000 26 23.9% 
15,001-
18,000 11 10.1% 
18,001-
21,000 8 7.3% 
More than 
21,000 13 11.9% 
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 A goal of the recruitment process was to attempt 
to avoid extreme drivers in either direction (i.e., very 
safe or very unsafe).  Self reported historical data 
indicate that a reasonably diverse distribution of 
drivers was obtained. 
 
Vehicles 
 
 Since 100 vehicles had to be instrumented with a 
number of sensors and data collection hardware, and 
since the complexity of the hardware required a 
number of custom mounting brackets to be 
manufactured, the number of vehicle types had to be 
limited for this study.  Six different vehicle models 
were selected based upon their prevalence in the 
Northern Virginia area.  These included five sedan 
models (Chevrolet Malibu and Cavalier, Toyota 
Camry and Corolla, and Ford Taurus) and one SUV 
model (Ford Explorer).  The model years were 
limited to those with common body types and 
accessible vehicle networks (generally 1995 to 2003).  
The distribution of these vehicle types was: 
 
 
• Toyota Camry – 17% 
• Toyota Corolla – 18% 
• Chevy Cavalier – 17% 
• Chevy Malibu – 21% 
• Ford Taurus – 12% 
• Ford Explorer – 15% 
 
Classification of events 
 
Table 3 provides definitions of traffic “events” that 
served as a basis for the classifications that follow.  
The distinction between near crashes and incidents 
was based on the subjective assessment of reviewers 
in concert with kinematic and proximity data 
associated with adjacent vehicles or objects. 
   
RESULTS 
 
 Table 4 shows the relative frequency of crashes, 
near-crashes, and incidents for each conflicts type.  
Of the 82 crashes, 13 either occurred while the 
system was initializing after the vehicle ignition was 
started (approximately 90 seconds), or has 
incomplete data for other reasons (e.g., camera 
failure), leaving a total of 69 crashes for which data 
could be completely reduced. These data also 
included 761 near-crashes and 8,295 incidents. The 
first eight conflict types shown in Table 4 accounted 
for all of the crashes, 87 percent of the near-crashes 
and 93 percent of the incidents.  

 
Table 3. Classification of Events. 

 
Event 

Category 
Definition 

Crashes 

Any contact between the subject 
vehicle and another vehicle, fixed 
object, pedestrian pedacyclist, 
animal 

Near Crashes 
Defined as a conflict situation 
requiring a rapid, severe evasive 
maneuver to avoid a crash. 

Incidents  
Conflict requiring an evasive 
maneuver, but of lesser magnitude 
than a near crash 

  
 
 It is important to note that all of the crashes, 
including low speed collisions that were not police 
reported, are shown in Table 5.  A “crash” was 
operationally defined as “any measurable dissipation 
or transfer of energy due to the contact of the subject 
vehicle with another vehicle or object.”  A benefit of 
the naturalistic approach is that it was possible to 
record all of these events; however the severity of the 
crashes must be delineated to better understand the 
data.  Thus, the 69 crashes are parsed into the 
following four crash categories.  Note that 75 percent 
of the single vehicle crashes were low-g force 
physical contact or tire strikes; in other words, most 
of the crashes involved very minor physical contact. 
 
• Level I:  Police-reported air bag deployment 

and/or injury  
• Level II:  Police-reported property damage only 
• Level III:  Non-police-reported property damage 

only 
• Level IV:  Non-police-reported low-g physical 

contact or tire strike (greater than 10 mph)   
 
 Since it was possible to detect all crashes 
regardless of severity, it is interesting to note the 
large number of drivers who experienced one or more 
collisions during the 12 to 13 month data collection 
period.  Of all drivers, 7.5% of drivers never 
experienced an event of any severity.  In contrast, 
7.4% of the drivers experienced many incidents and 3 
or 4 crashes.  Thus, a handful of subjects were either 
very risky drivers or very safe, with the majority of 
drivers demonstrating a relatively normal distribution 
of events across the data collection period.  
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Table 4.  Number of crashes, near-crashes, and incidents for each conflict type. 

 
Conflict Type Crash Near-crash Incident 

Single vehicle 24 48 191 

Lead-vehicle 15 380 5783 

Following vehicle 12 70 766 

Object/obstacle 9 6 394 

Parked vehicle 4 5 83 

Animal 2 10 56 

Vehicle turning across subject vehicle path in opposite direction 2 27 79 

Adjacent vehicle 1 115 342 

Other 0 2 13 

Oncoming traffic 0 27 184 

Vehicle turning across subject vehicle path in same direction 0 3 10 

Vehicle turning into subject vehicle path in same direction 0 28 90 

Vehicle turning into subject vehicle path in opposite direction 0 0 1 

Vehicle moving across subject vehicle path through intersection 0 27 158 

Merging vehicle 0 6 18 

Pedestrian 0 6 108 

Pedalcyclist 0 0 16 

Unknown 0 1 3 

 
 

Table 5.  Crash type by crash severity level. 
 

Conflict Type Total 
Level  

I 
Level 

II 
Level 

III 
Level 

IV 
Single vehicle 24 1 0 5 18 
Lead-vehicle 15 1 3 5 6 
Following vehicle 12 2 2 5 3 
Object/obstacle 9 0 1 3 5 
Parked vehicle 4 0 0 2 2 
Animal 2 0 0 0 2 
Oncoming vehicle turning across subject vehicle path 2 1 1 0 0 
Adjacent vehicle 1 0 0 1 0 

 
Characterization of Driver Inattention  
 
 Historically, driver distraction has been typically 
discussed as a secondary task engagement.  Fatigue 
has also been described as relating to driver 
inattention.  In this study, it became clear that the 
definition of driver distraction needed to be expanded 
to a more encompassing ‘driver inattention’ construct 
that includes secondary task engagement and fatigue 
as well as two new categories, ‘Driving-related 
inattention to the forward roadway’ and ‘non-specific 

eye glance’.  ‘Driving-related inattention to the 
forward roadway’ involves the driver checking rear-
view mirrors or their blind spots.  This new category 
was added after viewing multiple crashes, near-
crashes, and incidents for which the driver was 
clearly paying attention to the driving task, but was 
not paying attention to the critical aspect of the 
driving task (i.e., forward roadway) at an inopportune 
moment involving a precipitating factor.    
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Figure 5.  Percentage of events for attention by severity level. 
 
 A second analysis of the crashes and near-
crashes in the 100-Car database was also conducted 
using the eye glance analysis performed manually by 
data reductionists.  The ‘non-specific eyeglance away 
from the forward roadway’ describes cases for which 
drivers glanced, usually momentarily, away from the 
roadway, but at no discernable object or person.  For 
this project, eye glance reduction was accomplished 
for crash and near-crash events only, so this category 
can only be used for the more severe events.   The 
four inattention categories identified above and 
considered together, suggested that driver’s glances 
away from the forward roadway potentially 
contribute to a much greater percentage of events 
than has been previously thought.  As shown in 
Figure 5, 78 percent of the crashes and 65 percent of 
the near crashes had one of these four inattention 
categories as a contributing factor.  
 
 An analysis of these types of inattention revealed 
that secondary task distraction was the largest of the 
four categories. The sources of inattention that 
generally contributed to the highest percentages of 
events (Figure 6) were wireless devices (primarily 
cell phones) internal distractions, and passenger-
related secondary tasks (primarily conversations).   It 
is important to note that “exposure,” the frequency 
and duration of inattention associated with each 
source of inattention, is not considered in these data.  
Since it is exposure that determines the overall risk of 
a distraction source, an analysis of frequency of 
device use is currently being conducted for a future 

report that will allow calculations of event rates to 
determine estimates of the relative risk associated 
with these tasks. 
 
 Figure 7 shows a breakdown of the wireless 
device tasks and associated events.  For these data, all 
of the crashes (about 8.7 percent of total study 
crashes) and a majority of the near crashes and 
incidents occurred during a cell phone conversation, 
although the dialing task was relatively high in term 
of total conflicts and was associated with the largest 
number of near crashes for this source of inattention.  
Although these data are important in that they 
represent the factors that contribute to events, they 
also highlight the need for the exposure data 
described above to establish the degree of risk. 
 
Inattention for Rear End Lead-Vehicle Scenarios 
 
 Of particular interest in the analyses of rear-end 
conflict contributing factors was the prevalence of 
distraction.  An important aspect in rear-end crash 
countermeasure development is the degree to which 
an un-alerted driver can be warned and make a proper 
response.  Of course, the 100-Car data can provide 
great insight into the degree to which distraction is an  
issue in such conflicts.  The important finding in this 
regard is that 93 percent of all lead vehicle crashes 
(13 out of 14) involved inattention to the forward 
roadway as a contributing factor (Figure 8).  Note 
also that a majority (68 percent) of the near crashes 
have inattention identified as a contributing factor.  
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Figure 6.  Frequency of occurrence of secondary tasks for crashes, near crashes and incidents.
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 Figure 9 shows the frequency of each source of 
inattention for each of the secondary tasks.  This 
allows comparison of the actual contribution of each 
of these sources of inattention to lead vehicle 
conflicts.  Wireless devices (primarily cell phones, 
but also including PDAs) were the most frequent 
contributing factor for lead vehicle events, followed 
by passenger-related inattention.  The trend was very 
similar for near-crashes.  Interior distractions were 
the most frequent source of inattention for crashes.  

 While cell phone use contributed much more 
frequently to incidents and near-crashes than any 
other secondary task, cell phone use did not 
contribute to any lead vehicle conflict crashes.  
Nevertheless, cell phone use did contribute to other 
types of crashes, such as run off road, single vehicle 
conflict (driver ran into a barricade), and following 
vehicle conflict (subject vehicle was struck). 
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Figure 8.  Percent of lead vehicle events for which inattention was listed as a contributing factor (includes the 
non-specific eye glance events for crashes and near crashes). 
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Figure 9.  Total frequency of secondary task type by severity. 
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SUMMARY AND CONCLUSIONS 
 
 The event database that was created during the 
100-Car Study can be useful for a variety of 
purposes; for example, evaluation of risky driving 
behavior and crash risk, calculation of relative risk of 
engaging in secondary tasks, and evaluation of driver 
response to lead vehicle brake lights.  To facilitate 
this process, the initial event database will be made 
publicly accessible via the Internet.  In addition, the 
initial event database can be expanded to address 
additional issues, since all of the video and electronic 
data for the entire study have been archived.  The 
100-Car Study contract specified ten objectives or 
goals that would be addressed through the initial 
analysis of the event database.  However, as of the 
time of this writing, there are three additional data 
reduction and analysis efforts underway for the 
purpose of addressing another eight goals, and there 
is considerable interest in using the data for even 
more purposes.  Progressing toward this potential for 
a multi-purpose, highly flexible and adaptable tool 
for driving safety may be the most important aspect 
of this study.   
 
 Despite the massive scope of the current effort, it 
was designed to serve as an exploratory study to a 
determine the feasibility, value, and methods for 
initiating a larger, more representative study.  From 
an epidemiological viewpoint, the study was small 
with the presence of 15 police-reported and 82 total 
crashes, including minor collisions.  Furthermore, 
drivers were represented from one area of the country 
(Northern Virginia/Washington, DC metro area).  
One purpose of a large-scale study would be to have 
a statistically representative sample of crashes 
(perhaps 2,000) and a more representative 
driver/environment sample. 
 
 The challenge of a large-scale study is not only 
the expense of such data collection but the 
management and analysis of such a large body of 
data.  Nevertheless, it is believed that a large-scale 
database would be an enormous asset and would be 
used by transportation researchers for many years to 
gain insight and understanding into a wide array of 
driving behavior issues and potentially serve as a 
basis for decision making and program development 
within both the government and business sectors.  
This belief is based upon the robustness of the study 
results and the expectation that these data will 
continue to be analyzed and the results made 
available, from a variety of researchers and research 
organizations.  Clearly, these data can provide unique 
insights into issues that have eluded the highway 
safety community for years.  
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